SDE Feature Class
Tags
Stream / Water, Canal / Ditch, US, Hydrography, Lake / Pond, FWHydrography, Swamp / Marsh, Reach Code, Artificial Path, Reservoir, Spring / Seep
The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
See dataset specific metadata.
None. Acknowledgment of the originating agencies would be appreciated in products derived from these data.
Extent
West | -96.760052 | East | -88.358382 |
North | 38.015867 | South | 31.563640 |
See dataset specific metadata.
See dataset specific metadata.
0800-1600 Eastern Time
In addition to the address above there are other ESIC offices throughout the country. A full list of these offices is at URL: http://mapping.usgs.gov/esic/esic_index.html
None. Acknowledgment of the originating agencies would be appreciated in products derived from these data.
Points, nodes, lines, and areas conform to topological rules. Lines intersect only at nodes, and all nodes anchor the ends of lines. Lines do not overshoot or undershoot other lines where they are supposed to meet. There are no duplicate lines. Lines bound areas and lines identify the areas to the left and right of the lines. Gaps and overlaps among areas do not exist. All areas close.
Points, nodes, lines, and areas conform to topological rules. Lines intersect only at nodes, and all nodes anchor the ends of lines. Lines do not overshoot or undershoot other lines where they are supposed to meet. There are no duplicate lines. Lines bound areas and lines identify the areas to the left and right of the lines. Gaps and overlaps among areas do not exist. All areas close.
The completeness of the data reflects the content of the sources, which most often are the published USGS topographic quadrangle and/or the USDA Forest Service Primary Base Series (PBS) map. The USGS topographic quadrangle is usually supplemented by Digital Orthophoto Quadrangles (DOQs). Features found on the ground may have been eliminated or generalized on the source map because of scale and legibility constraints. In general, streams longer than one mile (approximately 1.6 kilometers) were collected. Most streams that flow from a lake were collected regardless of their length. Only definite channels were collected so not all swamp/marsh features have stream/rivers delineated through them. Lake/ponds having an area greater than 6 acres were collected. Note, however, that these general rules were applied unevenly among maps during compilation. Reaches codes are defined on all features of type stream/river, canal/ditch, artificial path, coastline, and connector. Waterbody reach codes are defined on all lake/pond and most reservoir features. Names were applied from the GNIS database. Detailed capture conditions are provided for every feature type in the Standards for National Hydrography Dataset available online through http://mapping.usgs.gov/standards/. This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
The completeness of the data reflects the content of the sources, which most often are the published USGS topographic quadrangle and/or the USDA Forest Service Primary Base Series (PBS) map. The USGS topographic quadrangle is usually supplemented by Digital Orthophoto Quadrangles (DOQs). Features found on the ground may have been eliminated or generalized on the source map because of scale and legibility constraints. In general, streams longer than one mile (approximately 1.6 kilometers) were collected. Most streams that flow from a lake were collected regardless of their length. Only definite channels were collected so not all swamp/marsh features have stream/rivers delineated through them. Lake/ponds having an area greater than 6 acres were collected. Note, however, that these general rules were applied unevenly among maps during compilation. Reaches codes are defined on all features of type stream/river, canal/ditch, artificial path, coastline, and connector. Waterbody reach codes are defined on all lake/pond and most reservoir features. Names were applied from the GNIS database. Detailed capture conditions are provided for every feature type in the Standards for National Hydrography Dataset available online through http://mapping.usgs.gov/standards/. This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
Statements of horizontal positional accuracy are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For horizontal accuracy, this standard is met if at least 90 percent of points tested are within 0.02 inch (at map scale) of the true position. Additional offsets to positions may have been introduced where feature density is high to improve the legibility of map symbols. In addition, the digitizing of maps is estimated to contain a horizontal positional error of less than or equal to 0.003 inch standard error (at map scale) in the two component directions relative to the source maps. Visual comparison between the map graphic (including digital scans of the graphic) and plots or digital displays of points, lines, and areas, is used as control to assess the positional accuracy of digital data. Digital map elements along the adjoining edges of data sets are aligned if they are within a 0.02 inch tolerance (at map scale). Features with like dimensionality (for example, features that all are delineated with lines), with or without like characteristics, that are within the tolerance are aligned by moving the features equally to a common point. Features outside the tolerance are not moved; instead, a feature of type connector is added to join the features. This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
Statements of vertical positional accuracy for elevation of water surfaces are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For vertical accuracy, this standard is met if at least 90 percent of well-defined points tested are within one-half contour interval of the correct value. Elevations of water surface printed on the published map meet this standard; the contour intervals of the maps vary. These elevations were transcribed into the digital data; the accuracy of this transcription was checked by visual comparison between the data and the map. This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
The processes used to create and maintain high-resolution NHD data can be found in the table called "NHDMetadata". Because NHD data can be downloaded using several user-defined areas, the process descriptions can vary for each download. The NHDMetadata table contains a list of all the process descriptions that apply to a particular download. These process descriptions are linked using the DuuID to the NHDFeatureToMetadata table which contains the com_ids of all the features within the download. In addition, another table, the NHDSourceCitation, can also be linked through the DuuID to determine the sources used to create or update NHD data.
0800-1600 Eastern Time
In addition to the address above there are other ESIC offices throughout the country. A full list of these offices is at URL: http://mapping.usgs.gov/esic/esic_index.html
Internal feature number.
ESRI
Sequential unique whole numbers that are automatically generated.
Feature geometry.
ESRI
Coordinates defining the features.
The National Hydrography Dataset is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of water, paths through which water flows, and related entities. The information encoded about features includes a feature date, classification by type, other characteristics, a unique common identifier, the feature length or area, and (rarely) elevation of the surface of water pools and a description of the stage of the elevation. For reaches, encoded information includes a reach code. Names and their identifiers in the Geographic Names Information System, are assigned to most feature types. The direction of flow is encoded for networked features. The data also contains relations that encode metadata, and information that supports the exchange of future updates and improvements to the data. The names and definitions of all feature types, characteristics, and values are in the Standards for National Hydrography Dataset: Reston, Virginia, U.S. Geological Survey, 1999. The document is available online through http://mapping.usgs.gov/standards/.
The names and definitions of all feature types, characteristics, and values are in U.S. Geological Survey, 1999, Standards for National Hydrography Dataset High Resolution: Reston, Virginia, U.S. Geological Survey. The document is available online through http://mapping.usgs.gov/standards/. Information about tables and fields in the data are available from the user documentation for the National Hydrography Dataset at http://nhd.usgs.gov. The National Map - Hydrography Fact Sheet is also available at: http://erg.usgs.gov/isb/pubs/factsheets/fs06002.html.
0800-1600 Eastern Time
n addition to the address above there are other ESIC offices throughout the country. A full list of these offices is at URL: http://mapping.usgs.gov/esic/esic_index.html
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.
See dataset specific metadata.
None
None. Acknowledgment of the originating agencies would
be appreciated in products derived from these data.
In addition to the address above there are other ESIC offices throughout the country. A full list of these offices is at URL: http://mapping.usgs.gov/esic/esic_index.html
See dataset specific metadata.
The completeness of the data reflects the content of the sources, which most often are the published USGS topographic quadrangle and/or the USDA Forest Service Primary Base Series (PBS) map. The USGS topographic quadrangle is usually supplemented by Digital Orthophoto Quadrangles (DOQs). Features found on the ground may have been eliminated or generalized on the source map because of scale and legibility constraints. In general, streams longer than one mile (approximately 1.6 kilometers) were collected. Most streams that flow from a lake were collected regardless of their length. Only definite channels were collected so not all swamp/marsh features have stream/rivers delineated through them. Lake/ponds having an area greater than 6 acres were collected. Note, however, that these general rules were applied unevenly among maps during compilation. Reaches codes are defined on all features of type stream/river, canal/ditch, artificial path, coastline, and connector. Waterbody reach codes are defined on all lake/pond and most reservoir features. Names were applied from the GNIS database. Detailed capture conditions are provided for every feature type in the Standards for National Hydrography Dataset available online through http://mapping.usgs.gov/standards/.
This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
Points, nodes, lines, and areas conform to topological rules. Lines intersect only at nodes, and all nodes anchor the ends of lines. Lines do not overshoot or undershoot other lines where they are supposed to meet. There are no duplicate lines. Lines bound areas and lines identify the areas to the left and right of the lines. Gaps and overlaps among areas do not exist. All areas close.
The completeness of the data reflects the content of the sources, which most often are the published USGS topographic quadrangle and/or the USDA Forest Service Primary Base Series (PBS) map. The USGS topographic quadrangle is usually supplemented by Digital Orthophoto Quadrangles (DOQs). Features found on the ground may have been eliminated or generalized on the source map because of scale and legibility constraints. In general, streams longer than one mile (approximately 1.6 kilometers) were collected. Most streams that flow from a lake were collected regardless of their length. Only definite channels were collected so not all swamp/marsh features have stream/rivers delineated through them. Lake/ponds having an area greater than 6 acres were collected. Note, however, that these general rules were applied unevenly among maps during compilation. Reaches codes are defined on all features of type stream/river, canal/ditch, artificial path, coastline, and connector. Waterbody reach codes are defined on all lake/pond and most reservoir features. Names were applied from the GNIS database. Detailed capture conditions are provided for every feature type in the Standards for National Hydrography Dataset available online through http://mapping.usgs.gov/standards/.
This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
Statements of horizontal positional accuracy are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For horizontal accuracy, this standard is met if at least 90 percent of points tested are within 0.02 inch (at map scale) of the true position. Additional offsets to positions may have been introduced where feature density is high to improve the legibility of map symbols. In addition, the digitizing of maps is estimated to contain a horizontal positional error of less than or equal to 0.003 inch standard error (at map scale) in the two component directions relative to the source maps. Visual comparison between the map graphic (including digital scans of the graphic) and plots or digital displays of points, lines, and areas, is used as control to assess the positional accuracy of digital data. Digital map elements along the adjoining edges of data sets are aligned if they are within a 0.02 inch tolerance (at map scale). Features with like dimensionality (for example, features that all are delineated with lines), with or without like characteristics, that are within the tolerance are aligned by moving the features equally to a common point. Features outside the tolerance are not moved; instead, a feature of type connector is added to join the features.
This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
Statements of vertical positional accuracy for elevation of water surfaces are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For vertical accuracy, this standard is met if at least 90 percent of well-defined points tested are within one-half contour interval of the correct value. Elevations of water surface printed on the published map meet this standard; the contour intervals of the maps vary. These elevations were transcribed into the digital data; the accuracy of this transcription was checked by visual comparison between the data and the map.
This statement is generally true for the most common sources of NHD data. Other sources and methods may have been used to create or update NHD data. In some cases, additional information may be found in the NHDMetadata table.
The processes used to create and maintain high-resolution NHD data can be found in the table called "NHDMetadata". Because NHD data can be downloaded using several user-defined areas, the process descriptions can vary for each download. The NHDMetadata table contains a list of all the process descriptions that apply to a particular download. These process descriptions are linked using the DuuID to the NHDFeatureToMetadata table which contains the com_ids of all the features within the download. In addition, another table, the NHDSourceCitation, can also be linked through the DuuID to determine the sources used to create or update NHD data.
Dataset copied.
Metadata imported.
Dataset copied.
Dataset copied.
The National Hydrography Dataset is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of water, paths through which water flows, and related entities. The information encoded about features includes a feature date, classification by type, other characteristics, a unique common identifier, the feature length or area, and (rarely) elevation of the surface of water pools and a description of the stage of the elevation. For reaches, encoded information includes a reach code. Names and their identifiers in the Geographic Names Information System, are assigned to most feature types. The direction of flow is encoded for networked features. The data also contains relations that encode metadata, and information that supports the exchange of future updates and improvements to the data. The names and definitions of all feature types, characteristics, and values are in the Standards for National Hydrography Dataset: Reston, Virginia, U.S. Geological Survey, 1999. The document is available online through http://mapping.usgs.gov/standards/.
The names and definitions of all feature types, characteristics, and values are in U.S. Geological Survey, 1999, Standards for National Hydrography Dataset High Resolution: Reston, Virginia, U.S. Geological Survey. The document is available online through http://mapping.usgs.gov/standards/. Information about tables and fields in the data are available from the user documentation for the National Hydrography Dataset at http://nhd.usgs.gov. The National Map - Hydrography Fact Sheet is also available at: http://erg.usgs.gov/isb/pubs/factsheets/fs06002.html.
In addition to the address above there are other ESIC offices throughout the country. A full list of these offices is at URL: http://mapping.usgs.gov/esic/esic_index.html
n addition to the address above there are other ESIC offices throughout the country. A full list of these offices is at URL: http://mapping.usgs.gov/esic/esic_index.html